

Date Planned ://	Daily Tutorial Sheet-1	Expected Duration : 90 Min	
Actual Date of Attempt : / /	JEE Advanced (Archive)	Exact Duration :	

1.	First law of thermody	mamics is not adequa	ate in predicting the di	rection of a process	i. (1982)

- **2.** $C_{\rm p} C_{\rm V}$ for an ideal gas is (1984)
- 3. The total energy of one mole of an ideal monotomic gas at 27°C is cal. (1984)
- **4.** Heat capacity of a diatomic gas is higher than that of mono atomic gas. (1985)
- **5.** A system is said to beif it can neither exchange matter nor energy with the surroundings. **(1993)**
- **6.** Enthalpy is an property. (1997)
- 7. When Fe(s) is dissolved in aqueous hydrochloric acid in a closed vessel, the work done is (1997)
- 8. A sample of argon gas at 1 atm pressure and 27°C expands reversibly and adiabatically from $1.25 \, \text{dm}^3$ to $2.50 \, \text{dm}^3$. Calculate the enthalpy change in this process. $C_{v.m.}$ for argon is $12.48 \, \text{JK}^{-1} \, \text{mol}^{-1}$. (2000)
- **9. Assertion :** The heat absorbed during the isothermal expansion of an ideal gas against vacuum is zero.

Reason: The volume occupied by the molecules of an ideal gas is zero.

- (2000)
- (A) Statement-I is True, Statement-II is True and Statement-II is a correct explanation for Statement-I
- **(B)** Statement-I is True, Statement-II is True and Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True
- Show that the reaction $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$ at 300 K, is spontaneous and exothermic, when the standard entropy change is $-0.094 \, \text{kJ mol}^{-1} \, \text{K}^{-1}$. The standard Gibbs free energies of formation for CO_2 and CO are -394.4 and $-137.2 \, \text{kJ mol}^{-1}$, respectively.
- When 1-pentyne (A) is treated with 4N alcoholic KOH at 175°C, it is converted slowly into an equilibrium mixture of 1.3% 1-pentyne (A), 95.2% 2-pentyne (B) and 3.5% of 1, 2-pentadiene (C). The equilibrium was maintained at 175°C. Calculate ΔG° for the following equilibria: (2001)

$$B \longrightarrow A$$
 $\Delta G_1^{\circ} = ?$

$$B \longrightarrow C$$
 $\Delta G_2^{\circ} = ?$

From the calculated value of ΔG_1° and ΔG_2° indicate the order of stability of (A), (B) and (C). Write a reasonable reaction mechanism showing all intermediates leading to (A), (B) and (C).

- 12. One mole of a non-ideal gas undergoes a change of state (2.0 atm, 3.0 L, 95 K) \rightarrow (4.0 atm, 5.0 L, 245 K) with a change in internal energy, $\Delta U = 30.0 L$ atm. The change in enthalpy (ΔH) of the process in L atm is:
 - **(A)** 40.0

(B) 42.3

(C) 44.0

(D) not defined, because pressure is not constant

13. Two moles of a perfect gas undergo the following processes :

(2002)

- (a) a reversible isobaric expansion from (1.0 atm, 20.0 L) to (1.0 atm, 40.0 L)
- (b) a reversible isochoric change of state from (1.0 atm, 40.0 L) to (0.5 atm, 40.0 L)
- (c) a reversible isothermal compression from (0.5 atm 40.0 L) to (1.0 atm, 20.0 L)
 - (i) Sketch with labels each of the processes on the same p-V diagram.
 - (ii) Calculate the total work (W) and the total heat change (Q) involved in the above processes.
 - (iii) What will be the values of ΔU , ΔH and ΔS for the overall process?
- 14. C_v value of He is always 3R/2 but C_v value of H_2 is 3R/2 at low temperature and 5R/2 at moderate temperature and more than 5R/2 at higher temperature. Explain in two or three lines. (2003)
- **15.** The enthalpy of vapourization of a liquid is $30 \, \text{kJ mol}^{-1}$ and entropy of vapourization is $75 \, \text{J mol}^{-1} \, \text{K}^{-1}$. The boiling point of the liquid at 1 atm is :
 - (A) 250 K
- **(B)** 400 K
- (C) 450 K
- **(D)** 600 K